Home
Search results “Decision tree in data mining techniques articles”
Let’s Write a Decision Tree Classifier from Scratch - Machine Learning Recipes #8
 
09:53
Hey everyone! Glad to be back! Decision Tree classifiers are intuitive, interpretable, and one of my favorite supervised learning algorithms. In this episode, I’ll walk you through writing a Decision Tree classifier from scratch, in pure Python. I’ll introduce concepts including Decision Tree Learning, Gini Impurity, and Information Gain. Then, we’ll code it all up. Understanding how to accomplish this was helpful to me when I studied Machine Learning for the first time, and I hope it will prove useful to you as well. You can find the code from this video here: https://goo.gl/UdZoNr https://goo.gl/ZpWYzt Books! Hands-On Machine Learning with Scikit-Learn and TensorFlow https://goo.gl/kM0anQ Follow Josh on Twitter: https://twitter.com/random_forests Check out more Machine Learning Recipes here: https://goo.gl/KewA03 Subscribe to the Google Developers channel: http://goo.gl/mQyv5L
Views: 126688 Google Developers
Random Forest Classifier for News Articles Sentiment Analysis
 
13:27
Introduction DATA MINING It is the process to discover the knowledge or hidden pattern form large databases. The overall goal of data mining is to extract and obtain information from databases and transfer it into an understandable format for use in future. It is used by Business intelligence organizations, Financial analysts, Marketing organizations, and companies with a strong consumer focus like retail ,financial and communication . It can also be seen as one of the core process of knowledge discovery in data base (KDD). It can be viewed as process of Knowledge Discovery in database. Data Extraction/gathering:- To collect the data from sources . Eg: data warehousing. Data cleansing :- To eliminate bogus data and errors. Feature extraction:- To extract only task relevant data : i.e to obtain the interesting attributes of data . Pattern extraction and discovery :- This step is seen as process of data mining , where one should concentrate the effort. Visualization of the data and Evaluation of results :- To create knowledge base. CLASSIFICATION Classification is a technique of data mining to classify each item into predefined set of groups or classes. The goal of classification is to accurately predict the target class for each item in the data. For example, a classification model could be used to identify loan applicants as low, medium, or high credit risks. The simplest type of classification problem is binary classification. In binary classification, the target attribute has only two possible values: for example, high credit rating or low credit rating. Multiclass targets have more than two values: for example, low, medium, high, or unknown credit rating. SENTIMENT ANALYSIS Sentiment analysis is a sub-domain of opinion mining where the analysis is focused on the extraction of emotions and opinions of the people towards a particular topic. Sentiment analysis aims to determine the attitude of a speaker or a writer with respect to some topic. The attitude may be his or her judgment or evaluation, affective state (that is to say, the emotional state of the author when writing), or the intended emotional communication (that is to say, the emotional effect the author wishes to have on the reader). With opinion mining, we can distinguish poor content from high quality content. Random Forest Technique In this technique, a set of decision trees are grown and each tree votes for the most popular class, then the votes of different trees are integrated and a class is predicted for each sample. This approach is designed to increase the accuracy of the decision tree, more trees are produced to vote for class prediction. This approach is an ensemble classifier composed of some decision trees and the final result is the mean of individual trees results. Follow Us: Facebook : https://www.facebook.com/E2MatrixTrainingAndResearchInstitute/ Twitter: https://twitter.com/e2matrix_lab/ LinkedIn: https://www.linkedin.com/in/e2matrix-thesis-jalandhar/ Instagram: https://www.instagram.com/e2matrixresearch/
How Random Forest algorithm works
 
05:47
In this video I explain very briefly how the Random Forest algorithm works with a simple example composed by 4 decision trees.
Views: 270692 Thales Sehn Körting
C4.5 algorithm
 
05:13
C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. C4.5 is an extension of Quinlan's earlier ID3 algorithm. The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier. This video is targeted to blind users. Attribution: Article text available under CC-BY-SA Creative Commons image source in video
Views: 22876 Audiopedia
What is STRUCTURE MINING? What does STRUCTURE MINING mean? STRUCTURE MINING meaning & explanation
 
04:35
What is STRUCTURE MINING? What does STRUCTURE MINING mean? STRUCTURE MINING meaning - STRUCTURE MINING definition - STRUCTURE MINING explanation. Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/by-sa/3.0/ license. SUBSCRIBE to our Google Earth flights channel - https://www.youtube.com/channel/UC6UuCPh7GrXznZi0Hz2YQnQ Structure mining or structured data mining is the process of finding and extracting useful information from semi-structured data sets. Graph mining, sequential pattern mining and molecule mining are special cases of structured data mining. The growth of the use of semi-structured data has created new opportunities for data mining, which has traditionally been concerned with tabular data sets, reflecting the strong association between data mining and relational databases. Much of the world's interesting and mineable data does not easily fold into relational databases, though a generation of software engineers have been trained to believe this was the only way to handle data, and data mining algorithms have generally been developed only to cope with tabular data. XML, being the most frequent way of representing semi-structured data, is able to represent both tabular data and arbitrary trees. Any particular representation of data to be exchanged between two applications in XML is normally described by a schema often written in XSD. Practical examples of such schemata, for instance NewsML, are normally very sophisticated, containing multiple optional subtrees, used for representing special case data. Frequently around 90% of a schema is concerned with the definition of these optional data items and sub-trees. Messages and data, therefore, that are transmitted or encoded using XML and that conform to the same schema are liable to contain very different data depending on what is being transmitted. Such data presents large problems for conventional data mining. Two messages that conform to the same schema may have little data in common. Building a training set from such data means that if one were to try to format it as tabular data for conventional data mining, large sections of the tables would or could be empty. There is a tacit assumption made in the design of most data mining algorithms that the data presented will be complete. The other necessity is that the actual mining algorithms employed, whether supervised or unsupervised, must be able to handle sparse data. Namely, machine learning algorithms perform badly with incomplete data sets where only part of the information is supplied. For instance methods based on neural networks. or Ross Quinlan's ID3 algorithm. are highly accurate with good and representative samples of the problem, but perform badly with biased data. Most of times better model presentation with more careful and unbiased representation of input and output is enough. A particularly relevant area where finding the appropriate structure and model is the key issue is text mining. XPath is the standard mechanism used to refer to nodes and data items within XML. It has similarities to standard techniques for navigating directory hierarchies used in operating systems user interfaces. To data and structure mine XML data of any form, at least two extensions are required to conventional data mining. These are the ability to associate an XPath statement with any data pattern and sub statements with each data node in the data pattern, and the ability to mine the presence and count of any node or set of nodes within the document. As an example, if one were to represent a family tree in XML, using these extensions one could create a data set containing all the individuals in the tree, data items such as name and age at death, and counts of related nodes, such as number of children. More sophisticated searches could extract data such as grandparents' lifespans etc. The addition of these data types related to the structure of a document or message facilitates structure mining.
Views: 183 The Audiopedia
Decision tree learning
 
11:33
Decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusions about the item's target value. It is one of the predictive modelling approaches used in statistics, data mining and machine learning. More descriptive names for such tree models are classification trees or regression trees. In these tree structures, leaves represent class labels and branches represent conjunctions of features that lead to those class labels. In decision analysis, a decision tree can be used to visually and explicitly represent decisions and decision making. In data mining, a decision tree describes data but not decisions; rather the resulting classification tree can be an input for decision making. This page deals with decision trees in data mining. This video is targeted to blind users. Attribution: Article text available under CC-BY-SA Creative Commons image source in video
Views: 1112 Audiopedia
Weka Data Mining Tutorial for First Time & Beginner Users
 
23:09
23-minute beginner-friendly introduction to data mining with WEKA. Examples of algorithms to get you started with WEKA: logistic regression, decision tree, neural network and support vector machine. Update 7/20/2018: I put data files in .ARFF here http://pastebin.com/Ea55rc3j and in .CSV here http://pastebin.com/4sG90tTu Sorry uploading the data file took so long...it was on an old laptop.
Views: 409201 Brandon Weinberg
What is DECISION TREE? What does DECISION TREE mean? DECISION TREE meaning, definition & explanation
 
02:27
What is DECISION TREE? What does DECISION TREE mean? DECISION TREE meaning - DECISION TREE definition - DECISION TREE explanation. Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/by-sa/3.0/ license. A decision tree is a decision support tool that uses a tree-like graph or model of decisions and their possible consequences, including chance event outcomes, resource costs, and utility. It is one way to display an algorithm. Decision trees are commonly used in operations research, specifically in decision analysis, to help identify a strategy most likely to reach a goal, but are also a popular tool in machine learning. A decision tree is a flowchart-like structure in which each internal node represents a "test" on an attribute (e.g. whether a coin flip comes up heads or tails), each branch represents the outcome of the test and each leaf node represents a class label (decision taken after computing all attributes). The paths from root to leaf represents classification rules. In decision analysis a decision tree and the closely related influence diagram are used as a visual and analytical decision support tool, where the expected values (or expected utility) of competing alternatives are calculated. A decision tree consists of 3 types of nodes: Decision nodes - commonly represented by squares, Chance nodes - represented by circles, End nodes - represented by triangles. Decision trees are commonly used in operations research and operations management. If in practice decisions have to be taken online with no recall under incomplete knowledge, a decision tree should be paralleled by a probability model as a best choice model or online selection model algorithm. Another use of decision trees is as a descriptive means for calculating conditional probabilities. Decision trees, influence diagrams, utility functions, and other decision analysis tools and methods are taught to undergraduate students in schools of business, health economics, and public health, and are examples of operations research or management science methods.
Views: 1717 The Audiopedia
Naive Bayes Theorem | Introduction to Naive Bayes Theorem | Machine Learning Classification
 
09:50
Naive Bayes is a machine learning algorithm for classification problems. It is based on Bayes’ probability theorem. It is primarily used for text classification which involves high dimensional training data sets. A few examples are spam filtration, sentimental analysis, and classifying news articles. It is not only known for its simplicity, but also for its effectiveness. It is fast to build models and make predictions with Naive Bayes algorithm. Naive Bayes is the first algorithm that should be considered for solving text classification problem. Hence, you should learn this algorithm thoroughly. This video will talk about below: 1. Machine Learning Classification 2. Naive Bayes Theorem About us: HackerEarth is building the largest hub of programmers to help them practice and improve their programming skills. At HackerEarth, programmers: 1. Solve problems on Algorithms, DS, ML etc(https://goo.gl/6G4NjT). 2. Participate in coding contests(https://goo.gl/plOmbn) 3. Participate in hackathons(https://goo.gl/btD3D2) Subscribe Our Channel For More Updates : https://goo.gl/suzeTB For More Updates, Please follow us on: Facebook : https://goo.gl/40iEqB Twitter : https://goo.gl/LcTAsM LinkedIn : https://goo.gl/iQCgJh Blog : https://goo.gl/9yOzvG
Views: 45308 HackerEarth
Automatic Classification of Documents using RapidMiner
 
11:09
This is part 5 of a 5 part video series on Text Mining using the free and open-source RapidMiner. This video describes how to automatically classify documents using the Nearest Neighbor algorithm, and finding out which words are important to classification using the Naive Bayes learner. Cross-Validation is also covered.
Views: 54028 el chief
What Is Meant By Classifier In Data Mining?
 
00:47
Br data analysis task is an example of numeric prediction, where 11 feb 2017 all classification techniques assume some knowledge the. Edudata mining evaluation of classifiers. Once a datification scheme has been created, security standards that specify appropriate handling practices for each category and storage define the data's lifecyle requirements should be mining classificationwhat is classification? What prediction? Issues regarding prediction set t split into two subsets t1 t2 with sizes n1 n2 respectively, gini index of contains examples from n classes, gini(t) defined as. Data mining classification what is classification? Usual examples and regression data with weka, part 2 clustering ibm. Classification and prediction nyu computer science. Given a database of tuples and set classes, the classification problem is to define mapping where each tuple objective analyze input data develop an accurate description or model for class using features present in. Binary4 example6 probabilities8 data structure. The process of identifying the relationship and effects this on outcome future values objects is defined as regression. By simple definition, in classification clustering analyze a set of data and generate grouping rules which can be used to typically the learning task like any mining is an iterative process proaches, algorithm settings, before good classifier found. Classification is a two step process. A study on classification techniques in data mining ieee xplore. Classifiers for educational data mining semantic scholar. What's an example of this its simplicity means it's generally faster and more efficient than other algorithms, especially over large datasets. Regression helps in identifying 11 may 2010 this second article of the series, we'll discuss two common data mining methods classification and clustering which can be used to do more powerful you could have best about your customers (whatever that even means), but if don't apply right models it, it will just garbage abstract is a process inferring knowledge from such huge. Data mining classification and prediction slideshare. A classifier is a tool in data mining that takes bunch of representing things we want to classify and attempts predict which class the new belongs. Classification in data mining eecs. Data mining classification & prediction tutorialspoint. 04 classification in data mining slideshare. What is datification? Definition from whatis. The term 'classifier' sometimes also refers to the mathematical function, implemented by a therefore, 80. Data mining has three major components clustering or classification, association rules and sequence analysis. Mean absolute error and other coefficient. Poznan, poland mean squared error. Do not hesitate to ask any questions or read books!. Top 10 data mining algorithms, explained kdnuggets. Branches are added by making the same information gain calculation for data defined location on tree of classification can be applied to simpl
Views: 29 Roselyn Wnuk Tipz
Zingtree Decision Trees - Comprehensive Demo
 
01:03:21
This hour long video goes in depth into every feature of Zingtree, including end-user presentation, building trees, reporting and integrations.
Views: 750 Bill Zing
THE EFFECTIVENESS OF DATA MINING TECHNIQUES IN BANKING
 
00:36
Computer Applications: An International Journal (CAIJ) ISSN :2393 - 8455 http://airccse.com/caij/index.html ********************************************* Computer Applications: An International Journal (CAIJ), Vol.4, No.1/2/3/4, November 2017 DOI:10.5121/caij.2017.4401 THE EFFECTIVENESS OF DATA MINING TECHNIQUES IN BANKING Yuvika Priyadarshini Researcher, Jharkhand Rai University, Ranchi. ABSTRACT The aim of this study is to identify the extent of Data mining activities that are practiced by banks, Data mining is the ability to link structured and unstructured information with the changing rules by which people apply it. It is not a technology, but a solution that applies information technologies. Currently several industries including like banking, finance, retail, insurance, publicity, database marketing, sales predict, etc are Data Mining tools for Customer . Leading banks are using Data Mining tools for customer segmentation and benefit, credit scoring and approval, predicting payment lapse, marketing, detecting illegal transactions, etc. The Banking is realizing that it is possible to gain competitive advantage deploy data mining. This article provides the effectiveness of Data mining technique in organized Banking. It also discusses standard tasks involved in data mining; evaluate various data mining applications in different sectors KEYWORDS Definition of Data Mining and its task, Effectiveness of Data Mining Technique, Application of Data Mining in Banking, Global Banking Industry Trends, Effective Data Mining Component and Capabilities, Data Mining Strategy, Benefit of Data Mining Program in Banking
Views: 25 aircc journal
Prediction Analysis of Diabetes Patients using Random Forest Algorithm
 
08:34
Introduction The recent report of WHO shows a remarkable hike in the number of diabetic patients and this will be in the same pattern in the coming decades also. Early identification of diabetes is an important challenge. Data mining has played an important role in diabetes research. Data mining would be a valuable asset for diabetes researchers because it can unearth hidden knowledge from a huge amount of diabetes-related data. Various data mining techniques help diabetes research and ultimately improve the quality of health care for diabetes patients Random Forest Technique In this technique, a set of decision trees are grown and each tree votes for the most popular class, then the votes of different trees are integrated and a class is predicted for each sample. This approach is designed to increase the accuracy of the decision tree, more trees are produced to vote for class prediction. This approach is an ensemble classifier composed of some decision trees and the final result is the mean of individual trees results. Follow Us: Facebook : https://www.facebook.com/E2MatrixTrainingAndResearchInstitute/ Twitter: https://twitter.com/e2matrix_lab/ LinkedIn: https://www.linkedin.com/in/e2matrix-thesis-jalandhar/ Instagram: https://www.instagram.com/e2matrixresearch/
Text Classification Using Naive Bayes
 
16:29
This is a low math introduction and tutorial to classifying text using Naive Bayes. One of the most seminal methods to do so.
Views: 79224 Francisco Iacobelli
Random Forest Classifier For Movie Review Sentiment Analysis
 
14:02
DATA MINING It is the process to discover the knowledge or hidden pattern form large databases. The overall goal of data mining is to extract and obtain information from databases and transfer it into an understandable format for use in future. It is used by Business intelligence organizations, Financial analysts, Marketing organizations, and companies with a strong consumer focus like retail ,financial and communication . DATA MINING (cont.): It can also be seen as one of the core process of knowledge discovery in data base (KDD). It can be viewed as process of Knowledge Discovery in database. Data Extraction/gathering:- To collect the data from sources . Eg: data warehousing. Data cleansing :- To eliminate bogus data and errors. Feature extraction:- To extract only task relevant data : i.e to obtain the interesting attributes of data . Pattern extraction and discovery :- This step is seen as process of data mining , where one should concentrate the effort. Visualization of the data and Evaluation of results :- To create knowledge base. CLASSIFICATION Classification is a technique of data mining to classify each item into predefined set of groups or classes. The goal of classification is to accurately predict the target class for each item in the data. For example, a classification model could be used to identify loan applicants as low, medium, or high credit risks. The simplest type of classification problem is binary classification. In binary classification, the target attribute has only two possible values: for example, high credit rating or low credit rating. Multiclass targets have more than two values: for example, low, medium, high, or unknown credit rating. SENTIMENT ANALYSIS Sentiment analysis is a sub-domain of opinion mining where the analysis is focused on the extraction of emotions and opinions of the people towards a particular topic. Sentiment analysis aims to determine the attitude of a speaker or a writer with respect to some topic. The attitude may be his or her judgment or evaluation, affective state (that is to say, the emotional state of the author when writing), or the intended emotional communication (that is to say, the emotional effect the author wishes to have on the reader). With opinion mining, we can distinguish poor content from high quality content. For more information and query visit our website: Website : http://www.e2matrix.com Blog : http://www.e2matrix.com/blog/ WordPress : https://teche2matrix.wordpress.com/ Blogger : https://teche2matrix.blogspot.in/ Contact Us : +91 9041262727 Follow Us on Social Media Facebook : https://www.facebook.com/etwomatrix.researchlab Twitter : https://twitter.com/E2MATRIX1 LinkedIn : https://www.linkedin.com/in/e2matrix-training-research Google Plus : https://plus.google.com/u/0/+E2MatrixJalandhar Pinterest : https://in.pinterest.com/e2matrixresearchlab/ Tumblr : https://www.tumblr.com/blog/e2matrix24
Data Mining
 
05:27
Engineers explain data mining concepts giving commonly used techniques and methods according to: "Top 10 Algorithms in Data Mining" by XindongWu · Vipin Kumar · J. Ross Quinlan · Joydeep Ghosh · Qiang Yang · Hiroshi Motoda · Geoffrey J. McLachlan · Angus Ng · Bing Liu · Philip S. Yu · Zhi-Hua Zhou · Michael Steinbach · David J. Hand · Dan Steinberg 9 July 2007 UCLA article: http://www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/palace/datamining.htm Song: Miles Davis "So What" Kind of Blue (1959)
Views: 25 Nick Losee
Candidate Generation - Chapter 4 Part 1
 
04:25
Text Mining and Analytics Candidate Generation - Chapter 4 This video tutorials cover major techniques for mining and analyzing text data to discover interesting patterns, extract useful knowledge, and support decision making, with an emphasis on statistical approaches that can be generally applied to arbitrary text data in any natural language with no or minimum human effort. Detailed analysis of text data requires understanding of natural language text, which is known to be a difficult task for computers. However, a number of statistical approaches have been shown to work well for the "shallow" but robust analysis of text data for pattern finding and knowledge discovery. You will learn the basic concepts, principles, and major algorithms in text mining and their potential applications. analytics | analytics tools | analytics software | data analysis programs | data mining tools | data mining | text analytics | strucutred data | unstructured data |text mining | what is text mining | text mining techniques | AQL | Annotation Query Language More Articles, Scripts and How-To Papers on http://www.aodba.com
Views: 369 AO DBA
Coding a Decision Tree from Scratch Part 6/8: Main Algorithm - 2
 
10:59
In this video series we are going to code a decision tree classifier from scratch in Python using just numpy and pandas. And in this video we are going to make some small changes to our main function which was the actual decision tree algorithm. You can find the code for this video here: - https://github.com/SebastianMantey/Decision-Tree-from-Scratch Here are the two videos where we have discussed the theory behind the decision tree algorithm that we are going to build in this video series: - https://youtu.be/WlGuizdVaiY - https://youtu.be/ObLQcpuLAlI If you are wondering why the slides don’t disappear even though I am typing in the jupyter notebook, I used AutoHotkey for that. Here is an article that describes how to use it: - https://www.howtogeek.com/196958/the-3-best-ways-to-make-a-window-always-on-top-on-windows/
Views: 49 Sebastian Mantey
data mining projects
 
14:49
Contact Best Phd Projects Visit us: http://www.phdprojects.org/ http://www.phdprojects.org/phd-guidance/ http://www.phdprojects.org/phd-help/ http://www.phdprojects.org/phd-projects-uk/ http://www.phdprojects.org/phd-assistance-bangalore/ http://www.phdprojects.org/phd-assistance/ http://www.phdprojects.org/phd-3-months/ http://www.phdprojects.org/phd-dessetation-help/ http://www.phdprojects.org/phd-projects-computer-networking/ http://www.phdprojects.org/computer-science-thesis-topics-undergraduates/ http://www.phdprojects.org/phd-projects-australia/ http://www.phdprojects.org/phd-company/ http://www.phdprojects.org/phd-thesis-structure/ http://www.phdprojects.org/phd-guidance-help/ http://www.phdprojects.org/networking-projects-phd/ http://www.phdprojects.org/thesis-topics-computer-science-students/ http://www.phdprojects.org/buy-thesis-paper/ http://www.phdprojects.org/research-paper-sale/ http://www.phdprojects.org/cheap-paper-writing-service/ http://www.phdprojects.org/research-paper-assistance/ http://www.phdprojects.org/thesis-builder/ http://www.phdprojects.org/writing-journal-article-12-weeks/ http://www.phdprojects.org/write-my-paper-for-me/ http://www.phdprojects.org/phd-paper-writing-service/ http://www.phdprojects.org/thesis-maker/ http://www.phdprojects.org/thesis-helper/ http://www.phdprojects.org/thesis-writing-help/ http://www.phdprojects.org/dissertation-help-uk/ http://www.phdprojects.org/dissertation-writers-uk/ http://www.phdprojects.org/buy-dissertation-online/ http://www.phdprojects.org/phd-thesis-writing-services/ http://www.phdprojects.org/dissertation-writing-services-uk/ http://www.phdprojects.org/dissertation-writing-help/ http://www.phdprojects.org/phd-projects-in-computer-science/ http://www.phdprojects.org/dissertation-assistance/
Views: 373 PHD Projects
Linear Regression Analysis | Linear Regression in Python | Machine Learning Algorithms | Simplilearn
 
35:46
This Linear Regression in Machine Learning video will help you understand the basics of Linear Regression algorithm - what is Linear Regression, why is it needed and how Simple Linear Regression works with solved examples, Linear regression analysis, applications of Linear Regression and Multiple Linear Regression model. At the end, we will implement a use case on profit estimation of companies using Linear Regression in Python. This Machine Learning tutorial is ideal for beginners who want to understand Data Science algorithms as well as Machine Learning algorithms. Below topics are covered in this Linear Regression Machine Learning Tutorial: 1. Introduction to Machine Learning 2. Machine Learning Algorithms 3. Applications of Linear Regression 4. Understanding Linear Regression 5. Multiple Linear Regression 6. Usecase - Profit estimation of companies What is Machine Learning: Machine Learning is an application of Artificial Intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed. Subscribe to our channel for more Machine Learning Tutorials: https://www.youtube.com/user/Simplilearn?sub_confirmation=1 Machine Learning Articles: https://www.simplilearn.com/what-is-artificial-intelligence-and-why-ai-certification-article?utm_campaign=Linear-Regression-NUXdtN1W1FE&utm_medium=Tutorials&utm_source=youtube To gain in-depth knowledge of Machine Learning, check our Machine Learning certification training course: https://www.simplilearn.com/big-data-and-analytics/machine-learning-certification-training-course?utm_campaign=Linear-Regression-NUXdtN1W1FE&utm_medium=Tutorials&utm_source=youtube #MachineLearningAlgorithms #Datasciencecourse #DataScience #SimplilearnMachineLearning #MachineLearningCourse - - - - - - - - About Simplilearn Machine Learning course: A form of artificial intelligence, Machine Learning is revolutionizing the world of computing as well as all people’s digital interactions. Machine Learning powers such innovative automated technologies as recommendation engines, facial recognition, fraud protection and even self-driving cars.This Machine Learning course prepares engineers, data scientists and other professionals with knowledge and hands-on skills required for certification and job competency in Machine Learning. - - - - - - - Why learn Machine Learning? Machine Learning is taking over the world- and with that, there is a growing need among companies for professionals to know the ins and outs of Machine Learning The Machine Learning market size is expected to grow from USD 1.03 Billion in 2016 to USD 8.81 Billion by 2022, at a Compound Annual Growth Rate (CAGR) of 44.1% during the forecast period. - - - - - - What skills will you learn from this Machine Learning course? By the end of this Machine Learning course, you will be able to: 1. Master the concepts of supervised, unsupervised and reinforcement learning concepts and modeling. 2. Gain practical mastery over principles, algorithms, and applications of Machine Learning through a hands-on approach which includes working on 28 projects and one capstone project. 3. Acquire thorough knowledge of the mathematical and heuristic aspects of Machine Learning. 4. Understand the concepts and operation of support vector machines, kernel SVM, naive bayes, decision tree classifier, random forest classifier, logistic regression, K-nearest neighbors, K-means clustering and more. 5. Be able to model a wide variety of robust Machine Learning algorithms including deep learning, clustering, and recommendation systems - - - - - - - Who should take this Machine Learning Training Course? We recommend this Machine Learning training course for the following professionals in particular: 1. Developers aspiring to be a data scientist or Machine Learning engineer 2. Information architects who want to gain expertise in Machine Learning algorithms 3. Analytics professionals who want to work in Machine Learning or artificial intelligence 4. Graduates looking to build a career in data science and Machine Learning - - - - - - For more updates on courses and tips follow us on: - Facebook: https://www.facebook.com/Simplilearn - Twitter: https://twitter.com/simplilearn - LinkedIn: https://www.linkedin.com/company/simplilearn - Website: https://www.simplilearn.com Get the Android app: http://bit.ly/1WlVo4u Get the iOS app: http://apple.co/1HIO5J0
Views: 10659 Simplilearn
Feature Extraction - Machine Learning #6
 
11:40
In This tutorial we cover the basics of text processing where we extract features from news text and build a classifier that predicts the category of a news article based on the description of the article. The way this works in by using CountVectorizer for features extraction and Multinominal Naive Bayes classifier. GitHub/NB Viewer: http://nbviewer.ipython.org/github/twistedhardware/mltutorial/blob/master/notebooks/Lesson%206%20-%20Features%20Extraction.ipynb
Views: 20233 Roshan
Decision Trees in Venture Valuation
 
03:05
Final OPIM 614 project-- Created using PowToon -- Free sign up at http://www.powtoon.com/ . Make your own animated videos and animated presentations for free. PowToon is a free tool that allows you to develop cool animated clips and animated presentations for your website, office meeting, sales pitch, nonprofit fundraiser, product launch, video resume, or anything else you could use an animated explainer video. PowToon's animation templates help you create animated presentations and animated explainer videos from scratch. Anyone can produce awesome animations quickly with PowToon, without the cost or hassle other professional animation services require.
Difference Between Data Mining and Machine Learning
 
01:05
Difference between machine learning and data mining . , . . . . Machine learning relates with the study, design and development of the algorithms that give computers the capability to learn without being explicitly here are some more compilation of topics and latest discussions relates to this video, which we found thorough the internet. Hope this information will helpful to get idea in brief about this. These are aspects of data science that are closest to machine learning. Is a nice bit about the difference between ml and data mining on machine learning data mining is an area that has taken much of its inspiration and techniques from machine learning (and some, also, from statistics), but is put below information will help you to get some more though about the subject i am new to this area. In my image,. Data mining means to retrieve also, data mining is often considered a sub field of machine learning machine learning and data mining are research areas of computer science whose quick development is due the major difference between oltp and olap what is the difference between artificial intelligence, machine learning, statistics, and data mining. Posted by shakthydoss on june th, . Few anyway if you want for more info, you would better continue reading. Over time, we will see deeper connection between data mining and machine learning. Could they become twins one day? only time will tell chandrabhanurastogi utc #. I am very much confused in understanding machine learning, data analysis, data mining, data science to search this space of possibilities, machine learning techniques are correct use of term data mining is that it is part of process concerned another important difference look for causal relationships between environment and disease . When talking about artificial intelligence and machine learning, public a quick education on the difference between data mining, artificial machine learning is sometimes conflated with data mining, although that focuses the difference between the two fields arises from the goal of generalization the process of machine learning is similar to that of data mining. Both systems search the difference between machine learning and statistics in data mining discover the difference between machine learning and statistics and find out how generalization as search can be a data mining tool. Learn about the bias of the what are the differences between data science, data mining, machine learning, statistics, operations research, and so on? here i compare or spam (unwanted email), and the algorithms learn to distinguish between them automatically. Machine learning is a diverse and exciting field, and there are . From quora what are some good jokes in the machine learning community? what is the difference between statistics, machine learning, ai and data mining?. What's the difference between machine learning, deep learning, big data, statistics, decision & risk analysis, probability, fuzzy logic, and all the what's the difference between machine learning, deep learning, big data, statistics, decision & risk analysis, probability, fuzzy logic, and all the Most Discuss Difference between machine learning and data mining more interesting heading about this are what is the difference between data analytics, data analysis, data what is the difference between data mining, statistics, machine below topics also shows some interset as well analytics difference between data mining and machine learning m
Views: 16690 James Aldwin
Stock Market Prediction
 
07:03
Can we predict the price of Microsoft stock using Machine Learning? We'll train the Random Forest, Linear Regression, and Perceptron models on many years of historical price data as well as sentiment from news headlines to find out! Code for this video: https://github.com/llSourcell/Stock_Market_Prediction Please Subscribe! And like. And comment. That's what keeps me going. Follow me: Twitter: https://twitter.com/sirajraval Facebook: https://www.facebook.com/sirajology More learning resources: https://www.quantinsti.com/blog/machine-learning-trading-predict-stock-prices-regression/ https://medium.com/@TalPerry/deep-learning-the-stock-market-df853d139e02 https://iknowfirst.com/rsar-machine-learning-trading-stock-market-and-chaos https://www.udacity.com/course/machine-learning-for-trading--ud501 https://quant.stackexchange.com/questions/111/how-can-i-go-about-applying-machine-learning-algorithms-to-stock-markets https://quant.stackexchange.com/questions/111/how-can-i-go-about-applying-machine-learning-algorithms-to-stock-markets http://eugenezhulenev.com/blog/2014/11/14/stock-price-prediction-with-big-data-and-machine-learning/ https://cloud.google.com/solutions/machine-learning-with-financial-time-series-data https://www.linkedin.com/pulse/deep-learning-stock-price-prediction-explained-joe-ellsworth If you're wondering why my voice sounds weird, it's because i was down with Traveler's Diarrhea from my recent trip to India. It's such a debilitating sickness, but the show must go on. And yes, thankfully I'm better now :) Join us in the Wizards Slack channel: http://wizards.herokuapp.com/ And please support me on Patreon: https://www.patreon.com/user?u=3191693 Follow me: Twitter: https://twitter.com/sirajraval Facebook: https://www.facebook.com/sirajology Instagram: https://www.instagram.com/sirajraval/ Instagram: https://www.instagram.com/sirajraval/
Views: 67602 Siraj Raval
USF Data Mining ISM  6136 - Final Project
 
08:44
This is our final project video. We used data made available from the college scorecard website.
Views: 270 Jordan Rimert
Naive Bayes Classifier | Naive Bayes Algorithm | Naive Bayes Classifier With Example | Simplilearn
 
43:45
This Naive Bayes Classifier tutorial video will introduce you to the basic concepts of Naive Bayes classifier, what is Naive Bayes and Bayes theorem, conditional probability concepts used in Bayes theorem, where is Naive Bayes classifier used, how Naive Bayes algorithm works with solved examples, advantages of Naive Bayes. By the end of this video, you will also implement Naive Bayes algorithm for text classification in Python. The topics covered in this Naive Bayes video are as follows: 1. What is Naive Bayes? ( 01:06 ) 2. Naive Bayes and Machine Learning ( 05:45 ) 3. Why do we need Naive Bayes? ( 05:46 ) 4. Understanding Naive Bayes Classifier ( 06:30 ) 5. Advantages of Naive Bayes Classifier ( 20:17 ) 6. Demo - Text Classification using Naive Bayes ( 22:36 ) To learn more about Machine Learning, subscribe to our YouTube channel: https://www.youtube.com/user/Simplilearn?sub_confirmation=1 You can also go through the Slides here: https://goo.gl/Cw9wqy #NaiveBayes #MachineLearningAlgorithms #DataScienceCourse #DataScience #SimplilearnMachineLearning - - - - - - - - Simplilearn’s Machine Learning course will make you an expert in Machine Learning, a form of Artificial Intelligence that automates data analysis to enable computers to learn and adapt through experience to do specific tasks without explicit programming. You will master Machine Learning concepts and techniques including supervised and unsupervised learning, mathematical and heuristic aspects, hands-on modeling to develop algorithms and prepare you for the role of Machine Learning Engineer Why learn Machine Learning? Machine Learning is rapidly being deployed in all kinds of industries, creating a huge demand for skilled professionals. The Machine Learning market size is expected to grow from USD 1.03 billion in 2016 to USD 8.81 billion by 2022, at a Compound Annual Growth Rate (CAGR) of 44.1% during the forecast period. You can gain in-depth knowledge of Machine Learning by taking our Machine Learning certification training course. With Simplilearn’s Machine Learning course, you will prepare for a career as a Machine Learning engineer as you master concepts and techniques including supervised and unsupervised learning, mathematical and heuristic aspects, and hands-on modeling to develop algorithms. Those who complete the course will be able to: 1. Master the concepts of supervised, unsupervised and reinforcement learning concepts and modeling. 2. Gain practical mastery over principles, algorithms, and applications of Machine Learning through a hands-on approach which includes working on 28 projects and one capstone project. 3. Acquire thorough knowledge of the mathematical and heuristic aspects of Machine Learning. 4. Understand the concepts and operation of support vector machines, kernel SVM, Naive Bayes, decision tree classifier, random forest classifier, logistic regression, K-nearest neighbors, K-means clustering and more. 5. Model a wide variety of robust Machine Learning algorithms including deep learning, clustering, and recommendation systems The Machine Learning Course is recommended for: 1. Developers aspiring to be a data scientist or Machine Learning engineer 2. Information architects who want to gain expertise in Machine Learning algorithms 3. Analytics professionals who want to work in Machine Learning or artificial intelligence 4. Graduates looking to build a career in data science and Machine Learning Learn more at: https://www.simplilearn.com/big-data-and-analytics/machine-learning-certification-training-course?utm_campaign=Naive-Bayes-Classifier-l3dZ6ZNFjo0&utm_medium=Tutorials&utm_source=youtube For more information about Simplilearn’s courses, visit: - Facebook: https://www.facebook.com/Simplilearn - Twitter: https://twitter.com/simplilearn - LinkedIn: https://www.linkedin.com/company/simp... - Website: https://www.simplilearn.com Get the Android app: http://bit.ly/1WlVo4u Get the iOS app: http://apple.co/1HIO5J0
Views: 7257 Simplilearn
Data Mining: How You're Revealing More Than You Think
 
11:13
Data mining recently made big news with the Cambridge Analytica scandal, but it is not just for ads and politics. It can help doctors spot fatal infections and it can even predict massacres in the Congo. Hosted by: Stefan Chin Head to https://scishowfinds.com/ for hand selected artifacts of the universe! ---------- Support SciShow by becoming a patron on Patreon: https://www.patreon.com/scishow ---------- Dooblydoo thanks go to the following Patreon supporters: Lazarus G, Sam Lutfi, Nicholas Smith, D.A. Noe, سلطان الخليفي, Piya Shedden, KatieMarie Magnone, Scott Satovsky Jr, Charles Southerland, Patrick D. Ashmore, Tim Curwick, charles george, Kevin Bealer, Chris Peters ---------- Looking for SciShow elsewhere on the internet? Facebook: http://www.facebook.com/scishow Twitter: http://www.twitter.com/scishow Tumblr: http://scishow.tumblr.com Instagram: http://instagram.com/thescishow ---------- Sources: https://www.aaai.org/ojs/index.php/aimagazine/article/viewArticle/1230 https://www.theregister.co.uk/2006/08/15/beer_diapers/ https://www.theatlantic.com/technology/archive/2012/04/everything-you-wanted-to-know-about-data-mining-but-were-afraid-to-ask/255388/ https://www.economist.com/node/15557465 https://blogs.scientificamerican.com/guest-blog/9-bizarre-and-surprising-insights-from-data-science/ https://qz.com/584287/data-scientists-keep-forgetting-the-one-rule-every-researcher-should-know-by-heart/ https://www.amazon.com/Predictive-Analytics-Power-Predict-Click/dp/1118356853 http://dml.cs.byu.edu/~cgc/docs/mldm_tools/Reading/DMSuccessStories.html http://content.time.com/time/magazine/article/0,9171,2058205,00.html https://www.nytimes.com/2012/02/19/magazine/shopping-habits.html?pagewanted=all&_r=0 https://www2.deloitte.com/content/dam/Deloitte/de/Documents/deloitte-analytics/Deloitte_Predictive-Maintenance_PositionPaper.pdf https://www.cs.helsinki.fi/u/htoivone/pubs/advances.pdf http://cecs.louisville.edu/datamining/PDF/0471228524.pdf https://bits.blogs.nytimes.com/2012/03/28/bizarre-insights-from-big-data https://scholar.harvard.edu/files/todd_rogers/files/political_campaigns_and_big_data_0.pdf https://insights.spotify.com/us/2015/09/30/50-strangest-genre-names/ https://www.theguardian.com/news/2005/jan/12/food.foodanddrink1 https://adexchanger.com/data-exchanges/real-world-data-science-how-ebay-and-placed-put-theory-into-practice/ https://www.theverge.com/2015/9/30/9416579/spotify-discover-weekly-online-music-curation-interview http://blog.galvanize.com/spotify-discover-weekly-data-science/ Audio Source: https://freesound.org/people/makosan/sounds/135191/ Image Source: https://commons.wikimedia.org/wiki/File:Swiss_average.png
Views: 127766 SciShow
What is DATA MINING? What does DATA MINING mean? DATA MINING meaning, definition & explanation
 
03:43
What is DATA MINING? What does DATA MINING mean? DATA MINING meaning - DATA MINING definition - DATA MINING explanation. Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/by-sa/3.0/ license. Data mining is an interdisciplinary subfield of computer science. It is the computational process of discovering patterns in large data sets involving methods at the intersection of artificial intelligence, machine learning, statistics, and database systems. The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use. Aside from the raw analysis step, it involves database and data management aspects, data pre-processing, model and inference considerations, interestingness metrics, complexity considerations, post-processing of discovered structures, visualization, and online updating. Data mining is the analysis step of the "knowledge discovery in databases" process, or KDD. The term is a misnomer, because the goal is the extraction of patterns and knowledge from large amounts of data, not the extraction (mining) of data itself. It also is a buzzword and is frequently applied to any form of large-scale data or information processing (collection, extraction, warehousing, analysis, and statistics) as well as any application of computer decision support system, including artificial intelligence, machine learning, and business intelligence. The book Data mining: Practical machine learning tools and techniques with Java (which covers mostly machine learning material) was originally to be named just Practical machine learning, and the term data mining was only added for marketing reasons. Often the more general terms (large scale) data analysis and analytics – or, when referring to actual methods, artificial intelligence and machine learning – are more appropriate. The actual data mining task is the automatic or semi-automatic analysis of large quantities of data to extract previously unknown, interesting patterns such as groups of data records (cluster analysis), unusual records (anomaly detection), and dependencies (association rule mining). This usually involves using database techniques such as spatial indices. These patterns can then be seen as a kind of summary of the input data, and may be used in further analysis or, for example, in machine learning and predictive analytics. For example, the data mining step might identify multiple groups in the data, which can then be used to obtain more accurate prediction results by a decision support system. Neither the data collection, data preparation, nor result interpretation and reporting is part of the data mining step, but do belong to the overall KDD process as additional steps. The related terms data dredging, data fishing, and data snooping refer to the use of data mining methods to sample parts of a larger population data set that are (or may be) too small for reliable statistical inferences to be made about the validity of any patterns discovered. These methods can, however, be used in creating new hypotheses to test against the larger data populations.
Views: 4590 The Audiopedia
How to Build a Text Mining, Machine Learning Document Classification System in R!
 
26:02
We show how to build a machine learning document classification system from scratch in less than 30 minutes using R. We use a text mining approach to identify the speaker of unmarked presidential campaign speeches. Applications in brand management, auditing, fraud detection, electronic medical records, and more.
Views: 154411 Timothy DAuria
What is KNOWLEDGE DISCOVERY? What does KNOWLEDGE DISCOVERY mean? KNOWLEDGE DISCOVERY meaning
 
02:42
What is KNOWLEDGE DISCOVERY? What does KNOWLEDGE DISCOVERY mean? KNOWLEDGE DISCOVERY meaning - KNOWLEDGE DISCOVERY definition - KNOWLEDGE DISCOVERY explanation. Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/by-sa/3.0/ license. nowledge discovery describes the process of automatically searching large volumes of data for patterns that can be considered knowledge about the data. It is often described as deriving knowledge from the input data. Knowledge discovery developed out of the data mining domain, and is closely related to it both in terms of methodology and terminology. The most well-known branch of data mining is knowledge discovery, also known as knowledge discovery in databases (KDD). Just as many other forms of knowledge discovery it creates abstractions of the input data. The knowledge obtained through the process may become additional data that can be used for further usage and discovery. Often the outcomes from knowledge discovery are not actionable, actionable knowledge discovery, also known as domain driven data mining, aims to discover and deliver actionable knowledge and insights. Another promising application of knowledge discovery is in the area of software modernization, weakness discovery and compliance which involves understanding existing software artifacts. This process is related to a concept of reverse engineering. Usually the knowledge obtained from existing software is presented in the form of models to which specific queries can be made when necessary. An entity relationship is a frequent format of representing knowledge obtained from existing software. Object Management Group (OMG) developed specification Knowledge Discovery Metamodel (KDM) which defines an ontology for the software assets and their relationships for the purpose of performing knowledge discovery of existing code. Knowledge discovery from existing software systems, also known as software mining is closely related to data mining, since existing software artifacts contain enormous value for risk management and business value, key for the evaluation and evolution of software systems. Instead of mining individual data sets, software mining focuses on metadata, such as process flows (e.g. data flows, control flows, & call maps), architecture, database schemas, and business rules/terms/process.
Views: 1450 The Audiopedia
Candidate Generation - Chapter 4 Part 2
 
04:53
Text Mining and Analytics Candidate Generation - Chapter 4 Part 2 This video tutorials cover major techniques for mining and analyzing text data to discover interesting patterns, extract useful knowledge, and support decision making, with an emphasis on statistical approaches that can be generally applied to arbitrary text data in any natural language with no or minimum human effort. Detailed analysis of text data requires understanding of natural language text, which is known to be a difficult task for computers. However, a number of statistical approaches have been shown to work well for the "shallow" but robust analysis of text data for pattern finding and knowledge discovery. You will learn the basic concepts, principles, and major algorithms in text mining and their potential applications. analytics | analytics tools | analytics software | data analysis programs | data mining tools | data mining | text analytics | strucutred data | unstructured data |text mining | what is text mining | text mining techniques | AQL | Annotation Query Language More Articles, Scripts and How-To Papers on http://www.aodba.com
Views: 142 AO DBA
CHAID
 
05:39
CHAID is a type of decision tree technique, based upon adjusted significance testing. The technique was developed in South Africa and was published in 1980 by Gordon V. Kass, who had completed a PhD thesis on this topic. CHAID can be used for prediction as well as classification, and for detection of interaction between variables. CHAID stands for CHi-squared Automatic Interaction Detection, based upon a formal extension of the US AID and THAID procedures of the 1960s and 70s, which in turn were extensions of earlier research, including that performed in the UK in the 1950s. In practice, CHAID is often used in the context of direct marketing to select groups of consumers and predict how their responses to some variables affect other variables, although other early applications were in the field of medical and psychiatric research. This video is targeted to blind users. Attribution: Article text available under CC-BY-SA Creative Commons image source in video
Views: 5814 Audiopedia
What is CASE-BASED REASONING? What does CASE-BASED REASONING mean? CASE-BASED REASONING meaning
 
06:12
What is CASE-BASED REASONING? What does CASE-BASED REASONING mean? CASE-BASED REASONING meaning - CASE-BASED REASONING definition - CASE-BASED REASONING explanation. Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/by-sa/3.0/ license. Case-based reasoning (CBR), broadly construed, is the process of solving new problems based on the solutions of similar past problems. An auto mechanic who fixes an engine by recalling another car that exhibited similar symptoms is using case-based reasoning. A lawyer who advocates a particular outcome in a trial based on legal precedents or a judge who creates case law is using case-based reasoning. So, too, an engineer copying working elements of nature (practicing biomimicry), is treating nature as a database of solutions to problems. Case-based reasoning is a prominent kind of analogy making. It has been argued that case-based reasoning is not only a powerful method for computer reasoning, but also a pervasive behavior in everyday human problem solving; or, more radically, that all reasoning is based on past cases personally experienced. This view is related to prototype theory, which is most deeply explored in cognitive science. Case-based reasoning has been formalized for purposes of computer reasoning as a four-step process: 1. Retrieve: Given a target problem, retrieve from memory cases relevant to solving it. A case consists of a problem, its solution, and, typically, annotations about how the solution was derived. For example, suppose Fred wants to prepare blueberry pancakes. Being a novice cook, the most relevant experience he can recall is one in which he successfully made plain pancakes. The procedure he followed for making the plain pancakes, together with justifications for decisions made along the way, constitutes Fred's retrieved case. 2. Reuse: Map the solution from the previous case to the target problem. This may involve adapting the solution as needed to fit the new situation. In the pancake example, Fred must adapt his retrieved solution to include the addition of blueberries. 3. Revise: Having mapped the previous solution to the target situation, test the new solution in the real world (or a simulation) and, if necessary, revise. Suppose Fred adapted his pancake solution by adding blueberries to the batter. After mixing, he discovers that the batter has turned blue – an undesired effect. This suggests the following revision: delay the addition of blueberries until after the batter has been ladled into the pan. 4. Retain: After the solution has been successfully adapted to the target problem, store the resulting experience as a new case in memory. Fred, accordingly, records his new-found procedure for making blueberry pancakes, thereby enriching his set of stored experiences, and better preparing him for future pancake-making demands. At first glance, CBR may seem similar to the rule induction algorithms of machine learning. Like a rule-induction algorithm, CBR starts with a set of cases or training examples; it forms generalizations of these examples, albeit implicit ones, by identifying commonalities between a retrieved case and the target problem. If for instance a procedure for plain pancakes is mapped to blueberry pancakes, a decision is made to use the same basic batter and frying method, thus implicitly generalizing the set of situations under which the batter and frying method can be used. The key difference, however, between the implicit generalization in CBR and the generalization in rule induction lies in when the generalization is made. A rule-induction algorithm draws its generalizations from a set of training examples before the target problem is even known; that is, it performs eager generalization.
Views: 3267 The Audiopedia
What is AUDIO MINING? What does AUDIO MINING mean? AUDIO MINING meaning, definition & explanation
 
02:05
What is AUDIO MINING? What does AUDIO MINING mean? AUDIO MINING meaning - AUDIO MINING definition - AUDIO MINING explanation. Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/by-sa/3.0/ license. Audio mining is a technique by which the content of an audio signal can be automatically analysed and searched. It is most commonly used in the field of automatic speech recognition, where the analysis tries to identify any speech within the audio. The audio will typically be processed by a speech recognition system in order to identify word or phoneme units that are likely to occur in the spoken content. This information may either be used immediately in pre-defined searches for keywords or phrases (a real-time "word spotting" system), or the output of the speech recogniser may be stored in an index file. One or more audio mining index files can then be loaded at a later date in order to run searches for keywords or phrases. The results of a search will normally be in terms of hits, which are regions within files that are good matches for the chosen keywords. The user may then be able to listen to the audio corresponding to these hits in order to verify if a correct match was found. Audio mining systems used in the field of speech recognition are often divided into two groups: those that use Large Vocabulary Continuous Speech Recognisers (LVCSR) and those that use phonetic recognition. Musical audio mining (also known as music information retrieval) relates to the identification of perceptually important characteristics of a piece of music such as melodic, harmonic or rhythmic structure. Searches can then be carried out to find pieces of music that are similar in terms of their melodic, harmonic and/or rhythmic characteristics.
Views: 198 The Audiopedia
INTRODUCTION TO DATA MINING IN HINDI
 
15:39
find relevant notes at-https://viden.io/
Views: 96051 LearnEveryone
What is INSTANCE SELECTION? What does INSTANCE SELECTION mean? INSTANCE SELECTION meaning
 
03:34
What is INSTANCE SELECTION? What does INSTANCE SELECTION mean? INSTANCE SELECTION meaning - INSTANCE SELECTION definition - INSTANCE SELECTION explanation. Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/by-sa/3.0/ license. SUBSCRIBE to our Google Earth flights channel - https://www.youtube.com/channel/UC6UuCPh7GrXznZi0Hz2YQnQ Instance selection (or dataset reduction, or dataset condensation) is an important Data pre-processing step that can be applied in many Machine learning (or Data mining) tasks. Approaches for instance selection can be applied for reducing the original dataset to a manageable volume, leading to a reduction of the computational resources that are necessary for performing the learning process. Algorithms of instance selection can also be applied for removing noisy instances, before applying learning algorithms. This step can improve the accuracy in classification problems. Algorithm for instance selection should identify a subset of the total available data to achieve the original purpose of the data mining (or machine learning) application as if the whole data had been used. Considering this, the optimal outcome of IS would be the minimum data subset that can accomplish the same task with no performance loss, in comparison with the performance achieved when the task is performed using the whole available data. Therefore, every instance selection strategy should deal with a trade-off between the reduction rate of the dataset and the classification quality. The literature provides several differente algorithms for instance selection. They can be distinguished from each other according to several different criteria. Considering this, instance selection algorithms can be grouped in two main classes, according to what instances they select: algorithms that preserve the instances at the boundaries of classes and algorithms that preserve the internal instances of the classes. Within the category of algorithms that select instances at the boundaries it is possible to cite DROP3, ICF and LSBo. On the other hand, within the category of algorithms that select internal instances it is possible to mention ENN and LSSm. In general, algorithm such as ENN and LSSm are used for removing harmful (noisy) instances from the dataset. They do not reduce the data as the algorithms that select border instances, but they remove instances at the boundaries that have negative impact in the data ming task. They can be used bay other instance selection algorithms, as a filtering step. For example, the ENN algorithm is used by DROP3 as the first step, and the LSSm algorithm is used by LSBo. There is also another group os algorithms that adopt different selection criteria. For example, the algorithms LDIS and CDIS select the densest instances in a given arbitrary neighborhood. The selected instances can include both, border and internal instances. The LDIS and CDIS algorithms are very simple and select subsets that are very representative of the original dataset. Besides that, since they search by the representative instances in each class separately, they are faster (in terms of time complexity and effective running time) than other algorithms, such as DROP3 and ICF.
Views: 99 The Audiopedia
Machine Learning With Python | Machine Learning Tutorial | Python Machine Learning | Simplilearn
 
55:32
This Machine Learning with Python tutorial gives an introduction to Machine Learning and how to implement Machine Learning algorithms in Python. By the end of this video, you will be able to understand Machine Learning workflow, steps to download Anaconda, types of Machine Learning and hands-on in Python for Linear Regression and K-Means clustering algorithms. Below are the topics covered in this Machine Learning tutorial: 1. Why Machine Learning? ( 01:09 ) 2. Applications of Machine Learning ( 01:50 ) 3. How does Machine Learning work? ( 03:33 ) 4. Machine Learning Workflow ( 04:53 ) 5. Steps to download Anaconda ( 06:13 ) 6. Types of Machine Learning ( 09:53 ) 7. Linear Regression Demo ( 13:51 ) 8. K-Means Clustering Demo ( 26:02 ) 9. Use Case - Weather Analysis ( 39:27 ) What is Machine Learning: Machine Learning is an application of Artificial Intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed. Subscribe to our channel for more Machine Learning Tutorials: https://www.youtube.com/user/Simplilearn?sub_confirmation=1 You can also go through the Slides here: https://goo.gl/AMDVtD Machine Learning Articles: https://www.simplilearn.com/what-is-artificial-intelligence-and-why-ai-certification-article?utm_campaign=What-is-Machine-Learning-7JhjINPwfYQ&utm_medium=Tutorials&utm_source=youtube To gain in-depth knowledge of Machine Learning, check our Machine Learning certification training course: https://www.simplilearn.com/big-data-and-analytics/machine-learning-certification-training-course?utm_campaign=Machine-Learning-With-Python-Q59X518JZHE&utm_medium=Tutorials&utm_source=youtube #MachineLearningAlgorithms #Datasciencecourse #DataScience #SimplilearnMachineLearning #MachineLearningCourse - - - - - - - - About Simplilearn Machine Learning course: A form of artificial intelligence, Machine Learning is revolutionizing the world of computing as well as all people’s digital interactions. Machine Learning powers such innovative automated technologies as recommendation engines, facial recognition, fraud protection and even self-driving cars.This Machine Learning course prepares engineers, data scientists and other professionals with knowledge and hands-on skills required for certification and job competency in Machine Learning. - - - - - - - Why learn Machine Learning? Machine Learning is taking over the world- and with that, there is a growing need among companies for professionals to know the ins and outs of Machine Learning The Machine Learning market size is expected to grow from USD 1.03 Billion in 2016 to USD 8.81 Billion by 2022, at a Compound Annual Growth Rate (CAGR) of 44.1% during the forecast period. - - - - - - What skills will you learn from this Machine Learning course? By the end of this Machine Learning course, you will be able to: 1. Master the concepts of supervised, unsupervised and reinforcement learning concepts and modeling. 2. Gain practical mastery over principles, algorithms, and applications of Machine Learning through a hands-on approach which includes working on 28 projects and one capstone project. 3. Acquire thorough knowledge of the mathematical and heuristic aspects of Machine Learning. 4. Understand the concepts and operation of support vector machines, kernel SVM, Naive Bayes, decision tree classifier, random forest classifier, logistic regression, K-nearest neighbors, K-means clustering and more. 5. Be able to model a wide variety of robust Machine Learning algorithms including deep learning, clustering, and recommendation systems - - - - - - - Who should take this Machine Learning Training Course? We recommend this Machine Learning training course for the following professionals in particular: 1. Developers aspiring to be a data scientist or Machine Learning engineer 2. Information architects who want to gain expertise in Machine Learning algorithms 3. Analytics professionals who want to work in Machine Learning or artificial intelligence 4. Graduates looking to build a career in data science and Machine Learning - - - - - - For more updates on courses and tips follow us on: - Facebook: https://www.facebook.com/Simplilearn - Twitter: https://twitter.com/simplilearn - LinkedIn: https://www.linkedin.com/company/simplilearn - Website: https://www.simplilearn.com Get the Android app: http://bit.ly/1WlVo4u Get the iOS app: http://apple.co/1HIO5J0
Views: 22822 Simplilearn
What is ANOMALY DETECTION? What does ANOMALY DETECTION mean? ANOMALY DETECTION meaning
 
02:18
What is ANOMALY DETECTION? What does ANOMALY DETECTION mean? ANOMALY DETECTION meaning - ANOMALY DETECTION definition - ANOMALY DETECTION explanation. Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/by-sa/3.0/ license. In data mining, anomaly detection (also outlier detection) is the identification of items, events or observations which do not conform to an expected pattern or other items in a dataset.[1] Typically the anomalous items will translate to some kind of problem such as bank fraud, a structural defect, medical problems or errors in a text. Anomalies are also referred to as outliers, novelties, noise, deviations and exceptions.[2] In particular in the context of abuse and network intrusion detection, the interesting objects are often not rare objects, but unexpected bursts in activity. This pattern does not adhere to the common statistical definition of an outlier as a rare object, and many outlier detection methods (in particular unsupervised methods) will fail on such data, unless it has been aggregated appropriately. Instead, a cluster analysis algorithm may be able to detect the micro clusters formed by these patterns.[3] Three broad categories of anomaly detection techniques exist.[1] Unsupervised anomaly detection techniques detect anomalies in an unlabeled test data set under the assumption that the majority of the instances in the data set are normal by looking for instances that seem to fit least to the remainder of the data set. Supervised anomaly detection techniques require a data set that has been labeled as "normal" and "abnormal" and involves training a classifier (the key difference to many other statistical classification problems is the inherent unbalanced nature of outlier detection). Semi-supervised anomaly detection techniques construct a model representing normal behavior from a given normal training data set, and then testing the likelihood of a test instance to be generated by the learnt model.
Views: 3850 The Audiopedia
Weka Text Classification for First Time & Beginner Users
 
59:21
59-minute beginner-friendly tutorial on text classification in WEKA; all text changes to numbers and categories after 1-2, so 3-5 relate to many other data analysis (not specifically text classification) using WEKA. 5 main sections: 0:00 Introduction (5 minutes) 5:06 TextToDirectoryLoader (3 minutes) 8:12 StringToWordVector (19 minutes) 27:37 AttributeSelect (10 minutes) 37:37 Cost Sensitivity and Class Imbalance (8 minutes) 45:45 Classifiers (14 minutes) 59:07 Conclusion (20 seconds) Some notable sub-sections: - Section 1 - 5:49 TextDirectoryLoader Command (1 minute) - Section 2 - 6:44 ARFF File Syntax (1 minute 30 seconds) 8:10 Vectorizing Documents (2 minutes) 10:15 WordsToKeep setting/Word Presence (1 minute 10 seconds) 11:26 OutputWordCount setting/Word Frequency (25 seconds) 11:51 DoNotOperateOnAPerClassBasis setting (40 seconds) 12:34 IDFTransform and TFTransform settings/TF-IDF score (1 minute 30 seconds) 14:09 NormalizeDocLength setting (1 minute 17 seconds) 15:46 Stemmer setting/Lemmatization (1 minute 10 seconds) 16:56 Stopwords setting/Custom Stopwords File (1 minute 54 seconds) 18:50 Tokenizer setting/NGram Tokenizer/Bigrams/Trigrams/Alphabetical Tokenizer (2 minutes 35 seconds) 21:25 MinTermFreq setting (20 seconds) 21:45 PeriodicPruning setting (40 seconds) 22:25 AttributeNamePrefix setting (16 seconds) 22:42 LowerCaseTokens setting (1 minute 2 seconds) 23:45 AttributeIndices setting (2 minutes 4 seconds) - Section 3 - 28:07 AttributeSelect for reducing dataset to improve classifier performance/InfoGainEval evaluator/Ranker search (7 minutes) - Section 4 - 38:32 CostSensitiveClassifer/Adding cost effectiveness to base classifier (2 minutes 20 seconds) 42:17 Resample filter/Example of undersampling majority class (1 minute 10 seconds) 43:27 SMOTE filter/Example of oversampling the minority class (1 minute) - Section 5 - 45:34 Training vs. Testing Datasets (1 minute 32 seconds) 47:07 Naive Bayes Classifier (1 minute 57 seconds) 49:04 Multinomial Naive Bayes Classifier (10 seconds) 49:33 K Nearest Neighbor Classifier (1 minute 34 seconds) 51:17 J48 (Decision Tree) Classifier (2 minutes 32 seconds) 53:50 Random Forest Classifier (1 minute 39 seconds) 55:55 SMO (Support Vector Machine) Classifier (1 minute 38 seconds) 57:35 Supervised vs Semi-Supervised vs Unsupervised Learning/Clustering (1 minute 20 seconds) Classifiers introduces you to six (but not all) of WEKA's popular classifiers for text mining; 1) Naive Bayes, 2) Multinomial Naive Bayes, 3) K Nearest Neighbor, 4) J48, 5) Random Forest and 6) SMO. Each StringToWordVector setting is shown, e.g. tokenizer, outputWordCounts, normalizeDocLength, TF-IDF, stopwords, stemmer, etc. These are ways of representing documents as document vectors. Automatically converting 2,000 text files (plain text documents) into an ARFF file with TextDirectoryLoader is shown. Additionally shown is AttributeSelect which is a way of improving classifier performance by reducing the dataset. Cost-Sensitive Classifier is shown which is a way of assigning weights to different types of guesses. Resample and SMOTE are shown as ways of undersampling the majority class and oversampling the majority class. Introductory tips are shared throughout, e.g. distinguishing supervised learning (which is most of data mining) from semi-supervised and unsupervised learning, making identically-formatted training and testing datasets, how to easily subset outliers with the Visualize tab and more... ---------- Update March 24, 2014: Some people asked where to download the movie review data. It is named Polarity_Dataset_v2.0 and shared on Bo Pang's Cornell Ph.D. student page http://www.cs.cornell.edu/People/pabo/movie-review-data/ (Bo Pang is now a Senior Research Scientist at Google)
Views: 127662 Brandon Weinberg
Classification Trees in R
 
19:34
A conceptual introduction to classification trees, bagging, and random forests using R. Download the R syntax and data file at this URL: https://www.dropbox.com/s/1rkqxp0188fquou/CART.YouTube.SyntaxData.zip?dl=0
Views: 4871 Terry Jorgensen
What is DATA STREAM MINING? What does DATA STREAM MINING mean? DATA STREAM MINING meaning
 
01:57
What is DATA STREAM MINING? What does V mean? DATA STREAM MINING meaning - DATA STREAM MINING definition - DATA STREAM MINING explanation. Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/by-sa/3.0/ license. SUBSCRIBE to our Google Earth flights channel - https://www.youtube.com/channel/UC6UuCPh7GrXznZi0Hz2YQnQ Data Stream Mining is the process of extracting knowledge structures from continuous, rapid data records. A data stream is an ordered sequence of instances that in many applications of data stream mining can be read only once or a small number of times using limited computing and storage capabilities. In many data stream mining applications, the goal is to predict the class or value of new instances in the data stream given some knowledge about the class membership or values of previous instances in the data stream. Machine learning techniques can be used to learn this prediction task from labeled examples in an automated fashion. Often, concepts from the field of incremental learning are applied to cope with structural changes, on-line learning and real-time demands. In many applications, especially operating within non-stationary environments, the distribution underlying the instances or the rules underlying their labeling may change over time, i.e. the goal of the prediction, the class to be predicted or the target value to be predicted, may change over time. This problem is referred to as concept drift. Examples of data streams include computer network traffic, phone conversations, ATM transactions, web searches, and sensor data. Data stream mining can be considered a subfield of data mining, machine learning, and knowledge discovery.
Views: 217 The Audiopedia
Link analysis
 
11:27
In network theory, link analysis is a data-analysis technique used to evaluate relationships between nodes. Relationships may be identified among various types of nodes, including organizations, people and transactions. Link analysis has been used for investigation of criminal activity, computer security analysis, search engine optimization, market research, medical research, and art. This video is targeted to blind users. Attribution: Article text available under CC-BY-SA Creative Commons image source in video
Views: 735 Audiopedia
Joint Cluster Analysis of Attribute Data and Relationship Data: Problems, Algorithms & Applications
 
01:23:30
Attribute data and relationship data are two principle types of data, representing the intrinsic and extrinsic properties of entities. While attribute data has been the main source of data for cluster analysis, relationship data such as social networks or metabolic networks are becoming increasingly available. In many cases these two data types carry complementary information, which calls for a joint cluster analysis of both data types in order to achieve more natural clusterings. For example, when identifying research communities, relationship data could represent co-author relationships and attribute data could represent the research interests of scientists. Communities could then be identified as clusters of connected scientists with similar research interests. Our introduction of joint cluster analysis is part of a recent, broader trend to consider as much background information as possible in the process of cluster analysis, and in general, in data mining. In this talk, we briefly review related work including constrained clustering, semi-supervised clustering and multi-relational clustering. We then propose the Connected k-Center (CkC) problem, which aims at finding k connected clusters minimizing the radius with respect to the attribute data. We sketch the main ideas of the proof of NP-completeness and present a constant factor approximation algorithm for the CkC problem. Since this algorithm does not scale to large datasets, we have also developed NetScan, a heuristic algorithm that is efficient for large, real databases. We report experimental results from two applications, community identification and document clustering, both based on DBLP data. Our experiments demonstrate that NetScan finds clusters that are more meaningful and accurate than the results of existing algorithms. We conclude the talk with other promising applications and new problems of joint cluster analysis. In particular, we discuss the clustering of gene expression data and the hotspot analysis of crime data as well as a joint cluster analysis problem that does not require the user to specify the number of clusters in advance.
Views: 38 Microsoft Research
Data Science Bangla Tutorial for beginners
 
27:58
https://datajobs.com/what-is-data-science https://www.kaggle.com/wiki/Tutorials http://blog.datacamp.com/wp-content/uploads/2014/08/How-to-become-a-data-scientist.jpg https://www.quora.com/How-can-I-become-a-data-scientist-1 http://www.kdnuggets.com/2015/09/free-data-science-books.html http://www.learndatasci.com/best-data-science-online-courses/ https://www.simplilearn.com/resources-to-learn-data-science-online-article http://www.forbes.com/sites/drewhansen/2016/10/21/become-data-scientist/#6e201e6a5b1b https://www.datacamp.com/community/tutorials/how-to-become-a-data-scientist#gs.FLqYd58 http://www.kdnuggets.com/2016/08/become-data-scientist-part-1.html http://www.itcareerfinder.com/it-careers/big-data-scientist.html http://www.kdnuggets.com/2014/11/9-must-have-skills-data-scientist.html http://www.mastersindatascience.org/careers/data-scientist/ https://www.udacity.com/course/intro-to-data-science--ud359 https://www.datacamp.com/subscribe?coupon_code=NY-2017-PROMO https://blog.modeanalytics.com/data-science-career/ https://www.simplilearn.com/data-science-interview-questions-article https://www.quora.com/What-is-a-data-scientists-career-path-1 http://blog.udacity.com/2014/11/data-science-job-skills.html http://101.datascience.community/2016/11/28/data-scientists-data-engineers-software-engineers-the-difference-according-to-linkedin/ https://www.learnpython.org/ https://www.r-bloggers.com/how-to-learn-r-2/ http://www.hadoop360.com/blog/comprehensive-list-of-data-science-resources http://datasciencereport.com/2016/12/21/best-of-2016-data-science-central-most-popular-articles-this-year/#.WHJ7HVV97ct https://datascienceplus.com/learn-r-from-scratch-part-1/ http://noeticforce.com/best-free-tutorials-to-learn-python-pdfs-ebooks-online-interactive https://blog.modeanalytics.com/data-science-career/ https://www.analyticsvidhya.com/blog/2016/01/complete-tutorial-learn-data-science-python-scratch-2/ https://www.analyticsvidhya.com/blog/2016/02/complete-tutorial-learn-data-science-scratch/ https://www.import.io/post/38-great-resources-for-learning-data-mining-concepts-and-techniques/
Views: 4366 Farhana Sharmin
Hybrid Cluster Demo
 
03:16
Watch Hybrid Cluster features: Auto Scaling, Point-in-time Restore and Self Healing
Views: 3618 hybridsites
Text Categorization and Clustering Data Mining Rapidminer Projects
 
07:50
Contact Best Phd Projects Visit us: http://www.phdprojects.org/ http://www.phdprojects.org/phd-research-topic-wireless-body-area-network/
Views: 4581 PHD Projects
Ian Witten Interview - Our Current Explosion of Data
 
01:14
Professor Ian Witten talks an undeniable fact of modern society: the amount of data we are collecting is exploding. This increases the possibilities for data mining, which Weka is designed to help you do. Excerpt from an interview by Class Central with Ian Witten (Professor of Computer Science at the University of Waikato) about his Intro to Data Mining MOOC. See original article here: http://www.blog.class-central.com/?p=57230 Link to Course Information: https://www.class-central.com/mooc/1152/data-mining-with-weka Comprehensive MOOCs listings: https://www.class-central.com/
Views: 437 Class Central